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Abstract

A novel method to detect structural breaks in classification or prediction problems with repeated

cross sections is proposed. The theoretical foundation is presented and the power and robustness

of the method in a specific use case is showcased with a simulation study. The method utilizes

that the generalization error of a model is an IID sample from a distribution which can only

change between periods if the data generating process changes. Utilizing holdout data in each

period, any changes in performance can then be attributed to a structural break in the data.

This is tested utilizing tests for equality of means between the samples.
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1 Introduction

When creating a model to capture the relationship in a data set, it is important to know if

the relationship in the data set has changed throughout time. In econometrics, this is known

as a structural break. The perhaps most known method of detecting structural breaks is the

Chow test developed by Chow in 1960 [1], which test for equality of coefficients in two linear

regressions. There also exists a literature within time series forecasting, both trying to pinpoint

when structural breaks occur [2][3], but also how to handle structural breaks when doing out-

of-sample forecasting [4] [5].

However, neither of the two situations encapsulate prediction or classification problems in re-

peated cross sections. This is because 1) coefficients are not of specific interest and 2) we are not

modelling time series data. To the authors knowledge, no literature exists which has focus on

structural breaks in prediction or classification problems. Inspired by the out-of-sample forecast

literature in times series econometrics and the widespread use of model performance metrics in

the machine learning community, we propose a novel method to detect structural breaks in a

data generating process (henceforth DGP) by detecting breaks in the accuracy of a model. In

essence, by creating a set of IID generalization errors utilizing holdout data for each cross sec-

tion, we can compare the models performance for each cross section and hereby detect whether

the DGP has changed between periods.

Section 2 describes the theory behind the method for generating the IID sample of generalization

errors, followed by a discussion and recommendation of how to detect breaks. Section 3 includes

a simulation study, which shows that the method works in practice with a prediction problem

solved with the LASSO, and several different setups are utilized to examine the power of the

test. Section 4 consists of a discussion of drawbacks and possible further work, which is followed

by a conclusion in section 5.

2 Theory

In section 2.1, we first outline how to make inference for the generalization error with a single

cross section. In section 2.2, we show how this can be utilized to detect breaks in the DGP when

multiple cross sections are available. Section 2.3 concludes with a recommendation on how to

handle the multiple testing problem.
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2.1 Inference for the generalization error

This subsection will outline inference for the generalization error as it is usually utilized when

one is interested in estimating the accuracy of a single decision rule on a given domain. This

is done such that the known and common method, which is explained in Nadeau and Bengio

(2003) [6], is clearly outlined before we make any modifications to adapt it to our needs. Most

of the notation is an adjusted version of Nadeau and Bengio (2003) [6].

In essence, we show that, utilizing a holdout data set, we have unbiased estimators of the mean

and variance of the models performance on the given DGP. This is widely used to compare

different algorithms predictive power and is the cornerstone of cross validation.

It is important to note that this paper aims only to make inference for the generalization error of

a specific decision rule, and thus neither the generalization error for an infinite amount of folds

utilizing some form of cross validation or of a learning algorithm in and of it self. According to

Dietterich’s taxonomy, this places us squarely in the statistical question 1, i.e. how to predict

a models accuracy on a given domain with a sample large enough to create a holdout data set

[7]. This is an important distinction to make, as we are able to estimate the mean and variance

of this generalization error without bias, whereas comparing the generalization error of a model

when utilizing cross validation, a model across domains or a learning algorithm in and of itself

entails different problems which are not pertinent to this method (see [6], [8] and [9] for further

work on the generalization error in a broader scope).

The general setup is that we observe data of the form Zn1 with size n:

Zn = {Z1, ..., Zn} (1)

With each Zi defined by:

Zi = (Xi, Yi) ∈ Z ⊆ Rp+q (2)

Where p and q are the dimensions of Xi and Yi.

Zi’s are independently and identically distributed with unknown distribution P :

Zi ∼ P (Z) (3)

To summarize, we have a set of target covariates Yi and input covariates, Xi, which follow some

unspecified distribution, P (Z).

Our object of interest is the generalization error, L(D,Zn+1), which is a measure of how well

our model performs on data from the unknown distribution P (Z). Let L(D,Zn+1) be a function
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from Zn×Z to R, where D is a subset of Zn of size nD ≤ n and Zn+1 = (Xn+1, Yn+1) is a draw

from P (Z) which is not in D. Expanding on this function:

L(D;Zn+1) = L(D; (Xn+1, Yn+1)) = Q(F (D)(Xn+1), Yn+1) (4)

We see that the generalization error consists of two parts:

• A decision rule f = F (D) based on D, and as such takes input data of dimensions Rp and

outputs a prediction of dimensions Rq [F (D) : Rp → Rq]. In practice, this decision rule

will be created by a learning algorithm, however this is not a requisite, and as such could

also be a heuristic developed by a human or, in fact, any other arbitrary decision rule.

• An accuracy measure Q(Ŷn+1, Yn+1), where Ŷn+1 = f(Xn+1) is the prediction of the

decision rule given input Xn+1. For regression problems with q = 1 this could be the mean

squared error and for classification problems it could be the indicator function indicating

whether the classification was correct. This flexibility allows the researcher to utilize any

accuracy measure that the researcher is interested in and detects breaks in this specific

accuracy measure.

In essence, we utilize our development data D to create a decision rule F (D) (e.g. select

hyperparameters and fit our model to the data) and we then measure the accuracy on data not

in D utilizing some accuracy measure (e.g. mean squared error for prediction or log-loss score

for classification).

We are now interested in estimating µD ≡ E[L(D, i)], i /∈ D, i.e. the average generalization error

of the specific decision rule trained on the subset D on unknown data from the same unknown

distribution P (Z). What follows equals statistic number one from Nadeau and Bengio (2003)

[6].

To achieve this, we utilize a method completely analogous to splitting the data into a develop-

ment and holdout data set and estimating the performance of the model (on data from the same

domain) utilizing the holdout data set.

To obtain a holdout data set, we limit D to be of size nD < n with nH = n − nD, and denote

the holdout set H = Zn \ D. This allows us to compute nH IID generalization errors for the

specific decision rule trained on D. As we have an IID sample, we can ubiasedly estimate the

population sample and variance, which allows us to make inference for the generalization error

utilizing a central limit theorem.
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To estimate the population mean, µD, and the population variance, V[L(D, i)] = σ2D, i /∈ D, we

define the estimator µ̂D, calculated as the sample mean:

µ̂D ≡
1

nH

∑
i∈H
L(D; i) (5)

And the variance estimator σ̂2D, calculated as the sample variance with Bessel’s correction:

σ̂2D ≡
1

nH − 1

∑
i∈H

(L(D; i)− µ̂D)2 =
1

nH − 1

∑
i∈H

(
L(D; i)− 1

nH

∑
i∈H
L(D; i)

)2

(6)

The specific central limit theorem utilized is the Lindeberg-Lévy central limit theorem as derived

in Rao 1973 [10], as we have already assumed that Zi is IID. Under the further assumptions (or

’regularity conditions’) that E[L(D,Zi)] = µD and V[L(D,Zi)] = σ2D exist, the Lindeberg-Lévy

central limit theorem specifies that:

µ̂D − µD√
σ̂2
D
nH

d−→ N(0, 1) (7)

for nH →∞.

As such, we are able to make inference for the generalization error of a specific decision rule

on a given unknown distribution. In practice, this allows a researcher to split up a dataset

from an unknown distribution into a development (D) and holdout (H) data set and make

valid inference for the generalization error of a decision rule. However, it is important to note

that the distribution of H does not need to be the same as D to enable valid inference for the

generalization error of a model trained on D.

2.2 Detecting structural breaks

We have now derived how to make inference for the generalization error of a model on a given

holdout data set with a single cross section, widely used in model evaluation. We now introduce

a setup with repeated cross sections. Each cross section will have it’s own holdout data set,

and it is in these holdout data sets we will examine whether structural breaks (i.e. changes in

performance or changes in the distribution of the generalization error) occur.

We first go through the setup of the data and derivations for the mean and variance estimator.

This is followed by a simple three period univariate example, showcasing the procedure. We

then recommend a test to compare the generalization error in two period, before tackling them

multiple testing problem in section 2.3.
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The setup consists of T repeated cross sections, with each period t having size nt, which is

allowed to vary in between periods:

Znt = {Zt,1, ..., Zt,nt}, t ∈ {1, .., T} (8)

Where each Zt,i defined by:

Zt,i = (Xt,i, Yt,i) ∈ Z ⊆ Rp+q (9)

Where p and q are the dimensions of Xt,i and Yt,i, which are fixed for all periods.

All Zt,i’s are independently distributed and are furthermore also assumed to be identically

distributed within periods, with each period t having an unknown distribution Pt:

Zt,i ∼ Pt(Zt) (10)

This is analogous to simply repeating the previous setup, and allowing P (Z) to change between

periods.

To create a decision rule, we restrict a subset SD of size nSD < n1 in period 1 (the ’baseline’

period) to be used only for development, and utilize the remaining holdout subset SH of size

nSH = n1 − nSD to make inference for the generalization error. As such, only data in a single

baseline period is utilized to create a decision rule. For all other periods, the full amount of data

is utilized as the holdout data.

A simple way to think of it is that we have utilized a fraction of the data in the baseline period

to create our model, and the rest of the data is utilized to obtain generalization errors for each

period. If the distribution changes between periods, a structural break has occurred. Even

though we need not rely on asymptotics, we once again outline that we are able to make valid

inference for the generalization error in each period.

We define the expected generalization error associated with the distribution at time t, and the

associated variance:

µt ≡ E[L(SD; it)] (11)

σ2t ≡ V[L(SD; it)] (12)

where it is a draw from the unknown distribution Pt.

Assuming that the regularity conditions hold and we have enough data to utilize asymptotic

normality – as outlined in section 2.1 – we are able to make valid inference for all the periods
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with the two estimators:

µ̂t ≡
1

|Vt|
∑
i∈Vt

L(SD; i) (13)

σ̂2t ≡
1

|Vt| − 1

∑
i∈Vt

(L(SD; i)− µ̂t)2 =
1

|Vt| − 1

∑
i∈Vt

(
L(SD; i)− 1

|Vt|
∑
i∈Vt

L(SD; i)

)2

(14)

where Vt denotes the set of data available at time t which is not in SD and |Vt| denotes the

amount of elements in the set. This corresponds to SH for period 1 and all available observations

for t > 1. As such, we are able to consistently estimate the mean of the generalization error in

each period.

Another way to to think of this method is that we have T independent samples, one for each

period, and if the DGP is unchanged, then the T different independent samples come from the

same population, and thus will have the same characteristics. It is important to note that changes

in anything in the DGP that influences the performance of the model can cause a break. This

could be changed covariances between covariates, heteroscedasticity in the error term, changes

in parameter values (both mean and for covariates) or changes in any other structure that this

specific model utilizes to make predictions.

To illustrate this and display the simplicity of the procedure, we have created an example with

a univariate model in three different periods. The covariate is standard normally distributed

and has a baseline associated parameter value of 4 and a normally distributed error term with a

mean of 0 and a standard deviation of 2. In period 1, we have 2000 observations, 75% of which

are utilized to fit an OLS model (i.e. the decision rule F (D) is obtained by fitting a regression

to the development data) and 25% of which are utilized as a holdout data set. In period 2 and

3, we have 500 observations, utilized as holdout data sets. Here we exploit that the sample size

in each period can vary to achieve equal sample sizes (for illustrative purposes), but in general

one should except less observations in the baseline period due to the need for a development

set. In period 2, we change the parameter value to 8, and in period 3 we change the standard

deviation of the error to 1. The accuracy measure of choice is the mean squared error. For each

holdout set, we compute predictions and calculate the mean squared error, and the result can

be seen in figure 1.
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Figure 1: Distribution of the mean squared error across periods

10 5 10 4 10 3 10 2 10 1 100 101 102

Mean squared error
0

10

20

30

40

50

60

70

80

Co
un

t

Period
1
2
3

Note: The x-axis is logarithmically scaled

In this simple example, it can be visually be discerned that the distribution has changed, and

thus the DGP has changed between periods. In real use cases, it will probably not be as clear,

and we must use a statistical test to discern if there are any differences. As already established,

the means, when scaled properly, asymptotically converge to standard normal distributions.

However, it is not given that we must rely on asymptotics.

Each and every characteristic of the distributions should be the same, and as such the amount of

statistical tests we can utilize is very large. We will make the case that equality of means is the

most fitting characteristic to test, although certainly not the only one possible. This conclusion

is drawn from two considerations: 1) There exists equality of means testing procedures that take

into account when multiple comparisons are made (a topic we return to in section 2.3), and 2)

it is common to focus on expected performance in the machine learning literature.

In regards to 1), there have been multiple procedures that have been developed and utilized

as this is a common occurrence for researchers who are interested in effects between different

treatments in experiments, see Maxwell and Delaney (2004) [11] for a thorough walk through,

especially chapter 4. These tests obtain higher power than simply testing each pair with a given

test and then utilizing the Bonferroni correction, while still controlling the type I error at the

given significance level. In regards to 2), it seems to us that a break in the DGP which changes
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characteristics other than the mean, but not the mean, are of lesser interest.

We note that we are interested in which of the periods differ, not just if periods differ, which rule

out any tests which test equality for all periods at the same time without any way of detecting

which periods differ in mean.

If T = 2, we propose to use a t-type test to test for equality between means. As we have no

knowledge of how σ2i will behave if the null is violated, we have two options: 1) Continue to

require that our sample size in each period is large enough such that a central limit theorem

applies and utilize tests with homogeneity and equal sample size assumptions [12], or 2) utilize

tests that do not have homogeneity and equal sample size assumptions. In theory, a third

possibility exists: Test whether the variances are equal before proceeding, but this will inflate

the amount of type I errors by doing multiple tests [11][12] and is disregarded.

It has been shown that only a small loss of power occurs when using a heteroskedasticity and

unequal sample size robust t-test (Welch’s unequal variances t-test) when the assumption of

homogeneity and equal sample sizes is met, but performing considerably better than Student’s

t-test when assumptions are not met [12][13]. We therefore recommend that one uses Welch’s

unequal variances t-test and do not require that the holdout sample sizes are sufficiently large

for a central limit theorem to apply, hereby relaxing this assumption.

To quickly reiterate Welch’s t-test, the test statistic for equality between the means of group i

and j is calculated as:

t =
µ̂i − µ̂j√
σ̂2
i
|Vi| +

σ̂2
j

|Vj |

(15)

which is approximately t-distributed with ν degrees of freedom calculated from the Welch-

Satterthwaite equation [12]:

ν =

(
σ̂2
i
|Vi| +

σ̂2
j

|Vj |

)2

(
σ̂2
i

|Vi|

)2

|Vi|−1 +

(
σ̂2
j

|Vj |

)2

|Vj |−1

(16)

As a general rule we have no a priori expection of which way the two means differ, and thus we

recommend two-sided testing. This procedure is readily implemented in many programs, and in

Python is implemented in SciPy.stats.ttest ind with equal var = False [14].

We now have outlined how to determine whether the sample mean of two different periods are
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the same when T = 2. However, simply repeating this procedure when T > 2 will inflate the

amount of type I errors, also known as the multiple testing problem.

2.3 The multiple testing problem

In this section we outline the multiple testing problem when comparing multiple means, and

discuss some of the pros and cons of correcting. We go on to recommend the Games-Howell

test, which corrects for multiple comparisons.

When repeatedly testing at a given significance level α, the probability of making a type I error,

i.e. rejecting the null when it shouldn’t be rejected, rises beyond the given significance level. As

outlined in Abdi (2007) [15], the probability of making at least one type I error for a family of

C independent tests at a significance level of α is given by:

1− (1− α)C (17)

which is called the family-wise error rate (FWER). This number quickly rises to be quite large,

i.e. for C = 10 the probability of making a type I error is 0.401.

Much has been written on whether to control the amount of type I errors per test or per family

of tests, far beyond what can be encapsulated in this paper, and opinions differ on this matter

[16]. Perhaps the most broadly accepted answer is ’it depends’. One reason not to control the

FWER is that it increases the amount of type II errors (decreases the power of the test), i.e. not

rejecting the null when the null does not hold [17]. How to handle this trade-off depends on the

researchers goals, but it also highlights the need to consider which method is used for correcting,

as some methods results in a higher loss of power than others. A common correction procedure

is the Bonferroni correction, which is overly conservative and thus results in comparatively many

type II errors [16], but can be used for any type of test with a significance level. This is part of

the reason why we consider group means, as more powerful tests exist [18].

Another way of minimizing the problem is to reduce the amount of comparisons. In the case

of detecting structural breaks, one might have a priori knowledge that could guide which com-

parisons are made. One could also only be interested in testing against the baseline (see e.g.

Dunnett’s test [19]). The most general case is when all pairwise comparisons must be made, and

in this case we recommend to control the FWER. This stems from the fact that 1) the amount

of comparisons quickly rises, 2) there exist mean tests where the loss of power is not as large

as the Bonferroni correction, and 3) the null hypothesis of no breaks at all is of interest to us.
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However, this is only a recommendation, and one could utilize multiple Welch’s t-tests and not

control.

We once again note that we have no knowledge of how the variance behaves under the alternative

hypothesis, and therefore we consider tests which are robust to unequal sample sizes and or

unequal variances. As mentioned earlier, Maxwell and Delaney (2004) has a thorough walk

through in chapter 4 [11]. For multiple comparisons with unequal variances and or unequal

sample sizes, they recommend either Dunnett’s T3 [20] for small sample sizes (i.e., fewer than

50 per group) and the Games-Howell procedure for larger sample sizes [21] is recommended.

The Games-Howell procedure is also found to have the highest power in another simulation

study [18]. We proceed with the Games-Howell test as we seldom expect to have as few as 50

observations per holdout group.

The Games-Howell test [21] has the same assumptions (independence of observations and regu-

larity conditions) and equations as Welch’s t-test for test statistic and degrees of freedom:

t =
µ̂i − µ̂j√
σ̂2
i
|Vi| +

σ̂2
j

|Vj |

(18)

ν =

(
σ̂2
i
|Vi| +

σ̂2
j

|Vj |

)2

(
σ̂2
i

|Vi|

)2

|Vi|−1 +

(
σ̂2
j

|Vj |

)2

|Vj |−1

(19)

The null hypothesis that µi = µj is then rejected if |t| > q(α,T,ν)√
2

, where q is the studentized

range distribution, α is the significance level and T is the amount of periods (groups). This

test is not as readily implemented, but the studentized range distribution is implemented in

the package statsmodels in statsmodels.stats.libqsturng, with p-values being able to be calculated

from psturng [22].

Utilizing this procedure also allows for an arbitrary number of breakpoints and discerning

whether periods separated by two breakpoints are the same, which could be useful in instances

where the data oscillates between two DGP’s, e.g. in a business cycle perspective.

3 Simulation

This section implements a simulated prediction problem and includes different setups to offer

evaluation and proof-of-concept of the method. The methodology is introduced, and three setups

with multiple periods are included to showcase the Games-Howell test, with the remainder of
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the tests utilizing Welch’s t-test to showcase the capabilities of the method and eliminate any

influence from multiple testing corrections.

3.1 Structure

The simulation study follows the ADEMP structure outlined in Morris, White and Crowther

(2019) [23], namely aims, data generating process, estimands and other targets, methods and

performance measures.

3.1.1 Aims

The aim of this simulation study is mainly to offer a proof-of-concept that it works for prediction

problems, both for multiple periods and for single pairwise comparisons. The power is estimated

in a wide range of different setups.

3.1.2 Data generating process

The data generating process (DGP) utilized is draws from a known model, rather than repeated

sampling from a given data set. This is chosen such that we are able to control and vary the

breaks in the DGP. The factors in the DGP are varied mostly one-by-one to reduce running

time, but if a priori we expect interaction effects two factors are varied together.

The specific DGP to generate nt draws within each period T utilized are K ’primitive’ random

standard normal covariates. Covariances and standard deviations are random draws from a

standard normal distribution (absolute value taken for standard deviations). From the K ran-

dom normal covariates we generate both squared terms and interaction terms, hereby increasing

the amount of covariates to
(
K
2

)
+ 2K. This is done to ensure interdependencies within the

data, as one would expect from real data. 75% of these covariates (rounded down) randomly

have a parameter of zero. The remaining 25% (rounded up) have non-zero covariates that are

standard normal draws. The target is generated as the sum of the product of the parameters

and covariates plus a normally distributed error term with mean zero and variance σt.

The choice to draw from the normal distribution is to ensure that the regularity conditions are

fulfilled. To ensure replicability, the seed it set once, and only once, in each notebook.

To reiterate the most fundamental information, with standard values in parenthesis if applica-

ble:

• T , the amount of periods,
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• nt, the amount of observations in each period (50000),

• K, the amount of primitive covariates (10),

• σ2t , the standard deviation of the error (4),

• whether the same parameters are changed when repeated breaks occur,

• the development share in the baseline period (75%),

• the share of changed parameters (10%, corresponding to a single parameter for K = 10)

Any change in the DGP between two periods constitutes a break. We implement two breaks:

Changing parameters and changing the variance of the error term. When changing parameters,

we change a fraction of the non-zero parameters to a new draw from a standard normal distri-

bution. If multiple breaks occur, it is both implemented such that 1) the same parameters are

changed and 2) a new random subset of parameters are changed.

Many of the elements of the DGP are draws from a random normal distribution (covariances and

standard deviation of covariates and parameters) and random selection of breaks. This large

element of randomness is to ensure that the results are not an artifact due to a choice that we

have made in these design steps.

3.1.3 Estimands and other targets

The target in this simulation is whether the null hypothesis is rejected, with focus on the power

of the test and the amount of type I errors.

3.1.4 Method

The theory outlined could, as outlined, both be used for classification and prediction problems.

A prediction task is chosen, for no particular reason. The method utilized to predict the target

variable is the LASSO [24], which is a regularized regression model. This decision is made

in tandem with our DGP decisions, as we expect that the LASSO will fare acceptably under

the given circumstances (i.e. there are covariates with parameters of zero). Furthermore, the

LASSO, and regularization in general, is widely known and utilized in the social sciences [25],

hereby showcasing a use case with which many readers are familiar. The accuracy measure

chosen is the mean squared error, as is customary for many models in prediction and regression

problems.
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The hyperparameter is chosen through 2 times repeated 5 fold cross validation with a develop-

ment share of 75% in a given baseline period. Ideally 10 times repeated 10 fold cross validation

would be preferred as this has been shown to have good replicability [26], but as most of the

computing time is utilized here, the amount is reduced. 25 hyperparameters logarithmically

distributed between 10−5 to 100 are iterated through. The best hyperparameter is chosen and

a model trained on the whole development set is used to generate generalization errors for the

holdout set in each period.

3.1.5 Performance measures

As we are interested in the power or amount of type I errors, the natural performance measure

is the rejection rate, Pr(pi < α), which corresponds to either the amount of type I errors or the

power of the test, dependent upon setup (i.e. if we have made a change between the periods

being compared or not). Both the rejection rate mean estimator and Monte Carlo standard

errors stem from Morris, White and Crowther (2019) [23]. The estimate of the rejection rate is

the empirical mean:

P̂r (pi < α) =
1

nsim

nsim∑
i=1

1(pi < α) (20)

Due to the inherent uncertainty when utilizing simulation methods, Monte Carlo standard errors

are reported, calculated as:

ŜE
[
P̂r(pi < α)

]
=

√√√√ 1
nsim

∑nsim
i=1 1(pi < α) ·

(
1−

[
1

nsim

∑nsim
i=1 1(pi < α)

])
nsim

(21)

To decide upon nsim, one could target a specific standard error. In an ideal case, we would also

do this. To ensure that the running time of the program does not become too large trying to

achieve specific standard errors and we do not have two methods we wish to compare against

each other (thus creating a target standard error which results in a significant difference), we

decide to do 250 repetitions.

3.2 Results

In this section we report the results for our simulations. First some use cases with multiple

periods (T = 6 or T = 12) is reported. This is followed by a section where only a single com-

parison is made between two periods, hereby focusing on the factors varied in each comparison,

removing any power losses due to correcting. All tests utilize a significance level of 5%. Due to

space constraints more tables are available in the appendix.
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3.2.1 Multiple comparisons

We first examine a baseline with 6 periods and no breaks. Rejection rate should be less than

5%, as this corresponds to the amount of type I errors, which we control at a significance level of

5% utilizing the Games-Howell procedure. The estimated rejection rate, seen in table 2, is 2.8%

with a standard error of 1%. This indicates that the Games-Howell test may be conservative for

this given setup, and controlling at less than 5%.

Table 1: No breaks, 6 periods

0

Rejection % 0.028

Standard error 0.01

We now examine two setups of varying length (T = 6 and T = 12) with two breaks of

20%. Changed parameters are randomly selected (i.e. not necessarily the same parameters

are changed). This is done to examine the loss of power associated with a higher amount of

periods.

We denote periods with the same DGP as being within a ’paradigm’, and we denote the

paradigms consequently as 1, 2 and 3 (2 being 20% different from 1, and 3 being 20% dif-

ferent from 2). The models are trained on a baseline period from paradigm 1. As such, we

have a setup with three paradigms of two periods and a setup with three paradigms of four

periods.

Within paradigms rejection rates should be at most 5%, this corresponds to the amount of type

I errors. Between paradigms, rejection rates should be as high as possible, as this corresponds

to the power.

The results are reported in table 2 and in table 3. What is reported is whether any significant

breaks have been found. Within thus compares all periods to all periods that come from the

same paradigm, and between compares all periods to all periods not from the same paradigm.

We further report where the significant differences are found, i.e. 1:1 reports the rejection rate

within paradigm 1, and 1:2 reports the rejection rate between a period in paradigm 1 and period

in paradigm 2.

We see that the amount of type I errors is very low (0.4% and 1.2%, respectively), again pointing
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to the Games-Howell being conservative for the given setup. No clear pattern exists in where

the type I errors are made.

The power also remains high, albeit lower for the higher amount of periods, as expected, with

estimates of 96% and 95.2%, respectively, and no significant difference. Here we see a clear

pattern in where the type II errors are made, with all occurring between paradigm 2 and 3.

This is no surprise, as the model is trained on a period from paradigm 1. This is not the case

for paradigm 2 and 3, and we therefore expect the generalization error to be distributed with

larger variances, hereby reducing power.

Table 2: 2 breaks, 6 periods

Within 1:1 2:2 3:3 Between 1:2 1:3 2:3

Rejection % 0.004 0.004 0.0 0.0 0.96 1.0 1.0 0.96

Standard error 0.004 0.004 0.0 0.0 0.012 0.0 0.0 0.012

Table 3: 2 breaks, 12 periods

Within 1:1 2:2 3:3 Between 1:2 1:3 2:3

Rejection % 0.012 0.0 0.004 0.008 0.952 1.0 1.0 0.952

Standard error 0.007 0.0 0.004 0.006 0.014 0.0 0.0 0.014

We conclude that the method works as intended, controlling the amount of type I errors at

(significantly) less than 5%, but still achieving high power.

3.2.2 Single comparison

The following results utilize Welch’s t-test, hereby focusing solely on the capabilities of the

method in a single instance where we compare two periods.

In table 4 we vary the variance of the error in all periods, and change a single parameter. The

standard deviation is increased two fold five times. The power remains relatively unchanged with

standard deviations of up to 16. The power then falls to 88.8%, 79.2% and 66.4%, respectively,

but we also note that this is with quite high standard deviations of up to 128, compared to

the covariates which are normally distributed with a standard deviation drawn from a standard

normal.
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Table 4: Different variances with break

4 8 16 32 64 128

Rejection % 0.968 0.964 0.944 0.888 0.792 0.664

Standard error 0.011 0.012 0.015 0.02 0.026 0.03

In table 5 we vary the amount of observations in each period. This has two effects: We both

reduce the amount of training data for a fixed development share of 75%, and we reduce the

amount of IID samples in each period. The power remains high for as few as 500 observations in

each period, but is increasing in amount of observations as expected. This showcases how this

method can be utilized even when working with relatively small amounts of data.

Table 5: Amount of observations

500 1000 2500 5000 10000 20000 40000

Rejection % 0.932 0.972 0.968 0.96 0.98 0.988 1.0

Standard error 0.016 0.01 0.011 0.012 0.009 0.007 0.0

As such, we end the testing of our method using simulations. We conclude that the method can

be used across a wide variety of setups, with little to no loss of power, with the largest loss of

power occurring when dealing with very noisy data.

4 Discussion

When evaluating this method, it is important to note what it can and what it cannot tell us, and

thus, how one should interpret a significant difference in the distribution in the generalization

error.

What the method can tell us is that something has changed between two periods, but not

what has changed between two periods. As such, it could be an intercept that has changed, a

changed parameter, a changed error distribution etc. For further work, if one is not interested

in intercept changes, a heuristic where each period is mean centered before any analysis starts

could be developed.

Furthermore, it is very important to note that we do not state that a model trained on both
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periods, with information in regards to what period each observation is part of, would perform

worse, e.g. a tree-based model could split on period at the first decision node, hereby effectively

creating a different model for each period. If one is interested in sample delimitation in regards

to now-casting, further work could be to develop a method where the accuracy of a model trained

on k (with k < T ) periods is compared to a model trained on k + 1 periods. Then an iterative

procedure could be developed starting with k = 1, training a model on the last period as the

baseline model, comparing to a model trained on the two last periods. If the performance of

the model is not worse, repeat for k = 2 and iterate backwards until all periods are included

or a significant decrease in performance is encountered. This comes back to the demarcation in

the times series literature: Are we interested in detecting breaks or how to handle breaks when

doing prediction or classification?

5 Conclusion

In this paper we propose a novel method to detect structural breaks in prediction and classifi-

cation problems with repeated cross sections. The method utilizes holdout data to generate IID

samples of generalization errors in each cross section, allowing us to redefine structural breaks in

terms of changes in the distribution of the generalization error. No distributional assumptions

are required, making the method widely applicable. It is shown that the mean of the distribu-

tions can be consistently estimated, but Welch’s t-test and the Games-Howell procedure which

do not rely on asymptotics are recommended, dependent upon whether the researcher corrects

for multiple comparisons or not. The means testing procedure is very general, and allows for

an arbitrary number of breakpoints and tells us whether paradigms separated by more than

one breakpoint are the same. A prediction problem utilizing a LASSO predictor is simulated,

showing that the method has high power across a wide variety of setups.
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7 Appendix

In table 6, we vary the standard deviation of the error across periods, but change no parameters.

The standard deviation in the baseline period is 4, and both standard deviation increases and

reductions are tested. We observe no type II errors, and the amount of type I error is controlled

at a level below α.

Table 6: Varying standard deviation

Standard deviation 2 3 4 5 6

Rejection % 1.0 1.0 0.04 1.0 1.0

Standard error 0.0 0.0 0.012 0.0 0.0

Table 7 varies the amount of primitive covariates K, but keeps the amount of changed parameters

equal (only 1 changed parameter), i.e. the share of changed parameters fall as K increases. We

observe no trend, with powers remaining stable around 98% to 99.6%.

Table 7: Varying amount of covariates

K 10 15 20 25 30

Rejection % 0.992 0.988 0.98 0.984 0.996

Standard error 0.006 0.007 0.009 0.008 0.004

Table 8 is a three period setup with two breaks, trained on period 1 and reports the comparison

between period 2 and 3, i.e. not trained on any of the periods being compared. Parameters are

randomly selected both times. We observe no clear trend, but it seems the power loss is highest

along and near the diagonal.

23 of 25



Table 8: Two breaks, random parameters

10% 25% 50% 75% 100%

10% 0.988 0.976 0.992 1.0 1.0

(0.007) (0.01) (0.006) (0.0) (0.0)

25% 0.988 0.984 0.976 0.996 1.0

(0.007) (0.008) (0.01) (0.004) (0.0)

50% 1.0 1.0 0.968 0.968 0.976

(0.0) (0.0) (0.011) (0.011) (0.01)

75% 1.0 0.988 0.984 0.976 0.972

(0.0) (0.007) (0.008) (0.01) (0.01)

100% 1.0 0.992 0.984 0.96 0.972

(0.0) (0.006) (0.008) (0.012) (0.01)

Table 9 is the same setup as table 8, but is limited to changing the same parameters both times.

The power is decreasing in the amount of changed parameters.

Table 9: Two breaks, same parameters

10% 15% 20% 50% 75% 100%

Rejection % 0.988 0.992 0.972 0.972 0.96 0.968

Standard error (0.007) (0.006) (0.01) (0.01) (0.012) (0.011)

Table 10 is a two period setup which utilizes different shares of development data combined with

varying standard deviations for the error term. Power seems relatively constant for different

standard deviations, but is decreasing in the standard deviation.
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Table 10: Varying development shares and error standard deviation

4 8 16 32

25% 0.996 0.984 0.944 0.88

(0.004) (0.008) (0.015) (0.021)

50% 0.992 0.96 0.932 0.888

(0.006) (0.012) (0.016) (0.02)

75% 0.98 0.964 0.932 0.856

(0.009) (0.012) (0.016) (0.022)

90% 0.992 0.964 0.924 0.856

(0.006) (0.012) (0.017) (0.022)

25 of 25


