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Goal
How to use machine learning methods for causality with
unknown nuisance functions

Variable selection

Double machine learning

How to perform causal model selection

When estimating heterogeneous treatment effects

Focus on intuitive understanding of methods and workflow

Will have to use some math to create a scaffold
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A citation mess
There’s a lot of different papers building on the same idea

Many have multiple working papers and sometimes also final publications

I try to use final publication if possible

Can cause confusion when they cite eachother

Victor Chernozhukov is part of many of these papers

Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E., Hansen, C., Newey, W., &
Robins, J. (2018). Double/debiased machine learning for treatment and structural
parameters is probably the most o�en cited
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What to cite?

 

Source: Chernozhukov et al., 2022
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Variable selection
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Partially linear model
We consider the following partially linear model

With  and 

Basic model properties:

Outcome is confounded by (unknown) nuisance function,

People select into treatment based on observables, with
(unknown) propensity function 

Y =

T =

 T + (X) + Uθ0 g0

  (X) + Vm0

E[U |X, T ] = 0 E[V |X] = 0

(⋅)g0

(⋅)m0
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Question
How do you perform functional form/variable selection when
using OLS?
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Model selection
Classic econometrics:

Use OLS and include covariates based on theory or inference

Canonical functional forms, backward selection, forward
selection etc.

Problems:

How to delete covariates systematically?

Adjust for multiple hypothesis testing?

Does data support it?
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Guided selection
Machine learning:

Use LASSO to perform covariate selection
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A quick recap of LASSO
Short for least absolute shrinkage and selection operator

Introduced by Tibshirani (1996)

We add a term to the minimization problem which penalizes
model complexity

where  is the L1 or Taxicab norm, corresponding to

= { ||Y − Xw| + λ||w| } , λ ≥ 0ŵ argmin
w

1

N
|22 |1

|| ⋅ ||1
| |∑k

i=1 wi
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A geometric interpretation

Figure 1: Two-dimensional plots of cost minimization

Source: Raschka & Mirjalili, 2019, ch. 4

(a) OLS
(b) Lasso
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A first step
Due to the regularization, all estimates are biased towards zero

We could exclude the treatment from the regularization

However, some problems remain
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Question
What kind of covariates should be included in our regression?

Given this, what’s the problem with using the modified LASSO
for variable selection?
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Confounders
Still problematic

We may omit potentially relevant variables

LASSO excludes possible variables if little predictive
power w.r.t. 

Excluded variables may still have predictive power w.r.t. 

Confounders with little (but non-zero) predictive power
w.r.t.  may be excluded

Y

T

Y

16



Post-double-selection
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Fixing the LASSO
A simple solution suggested by Belloni et al. (2014a) is to use a
post-double-selection method to correct for bias:

Step 1: estimate two LASSO models

a. Regress  on 

b. Regress  on 

Step 2: run OLS using only variables that were kept in either
LASSO

Also sometimes known as double-LASSO

Y X

T X
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Why?
This can be motivated in roughly two ways:

Researcher covariate selection is funky

P-hacking, subjectivity etc.

We are assuming sparsity
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Hyperparameter selection
Usually done with cross validation

Great out of sample predictive performance

Some issues

Tends to include too many variables

No formal theory
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Theoretical hyperparameters
There also exist theoretically justified hyperparameters

Good at variable selection

Formal theory

One issue:

Not great out of sample predictive performance

Hence never used in predictive modelling

Luckily, we’re just interested in covariate selection
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The formula

Where

 is the standard deviation of the residuals (homoskedastic)

 is the inverse CDF of the normal distribution

 and  are amount of covariates and sample size

 and  are constants

Usually 1.1 and 0.1

Taken from Urminsky et al. (2016) appendix

A non-technical introduction to post-double-selection

λ = 2.2 (1 − )σr N
−−√ Φ−1 α

2K ⋅ ln(N)

σr

Φ−1

K N

C α
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Residuals?
We must estimate the standard deviation of the residuals

As such, we need residuals

This is done in an iterative way

Get starter residuals by subtracting mean

Estimate standard deviation

Use formula

Repeat  amount of times or until convergence

In Urminsky et al. (2016) 

x

x = 100
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Inference
Formally, we need to assume sparsity to make valid inference
(Belloni et al., 2014b)

This is also what we implicitly do when we make low-
dimensional functional forms

As an example, LASSO could return , which won’t
work with OLS

However, LASSO can handle 

We can perform variable selection even if there are more
variables than observations!

K > N

K > N
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More variables than observations?
You might find high-dimensional problems irrelevant

Not so fast

Method can be used for datasets with few observations

We generally have many controls through Statistics
Denmark

Alternatively, you just don’t know the functional form

But willing to assume linear functional form

Create polynomial features
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Technical regressors
Consider the second, third or higher order polynomial
expansion of a regular amount of variables

Just amount of interactions quickly explodes

 at each level

Sparsity probably justified

Sometimes called technical regressors

Could also be other transformations of covariates

n!
k!(n−k)!
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Data driven selection
This method only does data driven selection of covariates

As such, it may leave out variables which you want to
include a priori

The formal theory in Belloni et al. (2014b) allows for inclusion
of these

If you want an additional covariate in, just add it to the set
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Instrumental variables
The same idea can be applied to instrumental variables

Introduced in Belloni et al. (2012)

A contender for how to approach many weak instruments
problem

We need to assume sparsity
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Implementations
There are a couple of packages

hdm in R

pdslasso in Stata

Hyperparameter selection that is robust to non-Gaussian and
heteroskedastic errors exist (Belloni et al., 2012)
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Double machine
learning
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Back to the partially linear model
We’re returning to the partially linear model

With  and 

We will be going through the main ideas of Chernozhukov et
al. (2018)

The intuitive version

Y =

T =

T + (X) + Uθ0 g0

(X) + Vm0

E[U |X, T ] = 0 E[V |X] = 0
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First idea: Sample splitting
We use data splitting to get two samples

Main part , auxiliary part , each with size 

In the auxiliary sample, , we estimate 

We can use any arbitrary machine learning method

Learn the confounding function

I m I a n

I a g(⋅)
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Estimator
In the main sample we estimate the parameter of interest

However, this estimator generally does not converge to the
true value

Not usable

=θ̂0

( − ( ))1
n√
∑i∈I m Ti Yi ĝ0 Xi

1
n
∑i∈I m T 2

i

35



Decomposing the error
We can decompose the error into two parts

The first part converges under mild conditions, the second does not

What could be the cause of this?

Think of what we do when learning ?

(θ − ) =n−−√ θ̂0

1
n√
∑i∈I m TiUi

1
n
∑i∈I m T 2

i

+
( − ( ))1

n√
∑i∈I m Ti g0 ĝ0 Xi

1
n
∑i∈I m T 2

i

ĝ0
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Regularization bias
It can be shown that this is due to regularization bias

We curb overfitting when learning 

This is done to control the bias-variance trade-off

Necessary for informative learning in complex and high-
dimensional settings

Estimator will have bias term that asymptotically diverges
and is not centered

Converges too slowly

ĝ
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Orthogonalization
Suppose we also estimate  on the auxiliary sample 

Calculate residuals  for 

We can then utilize the following estimator

(⋅)m̂0 I a

= T − (X)V̂ m̂0 X ∈ I m

=θ̌0
( − ( ))1

n
∑i∈I m V̂ i yi ĝ0 Xi

1
n
∑i∈I m V̂ iTi
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Decomposing
This can be decomposed into three terms, ,  and 

 is once again well behaved

 concerns regularization bias

 concerns overfitting bias

a b c

a

b

c
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The term 
The term  now depends on the product of the estimation errors in  and 

The moment is Neyman orthogonal

Locally insensitive to the value of the nuisance parameters

We can use noisy estimates

Hence why it is sometimes called orthogonal machine learning

Even though both estimates converge slowly, the product still converges

b
b m̂0 ĝ0

b =
[ ( ) − ( )][ ( ) − ( )]1

n√
∑i∈I m m̂0 Xi m0 Xi ĝ0 Xi g0 Xi

E[ ]V 2
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The term 
The term  relates to overfitting

Errors in DGP and estimation errors are related

Model overfits to the noise

Traditionally handled in semi-parametric analysis by assuming limited complexity

This rules out settings with machine learning methods, as they are too complex

c
c

By utilizing sample splitting, errors in DGP and estimation errors are unrelated

Weak assumptions needed, dependent on application
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Sample splitting
Like in the last session, we don’t like estimating treatment
effects in just one part of the sample

We rotate the data and repeat the process

Also supports K-fold data splitting

More data for estimating  and 

Should be done in practice

m0 g0
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Partialling out
There are estimators that take this into account exist

Also in the setup we’ve described

We’re going to switch to a slightly different estimator based on
Robinson (1988)

Difference between equation 4.3 and 4.4 in Chernozhukov et
al. (2018)
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Generalizing
Consider the DGP

where

Question: What’s the difference between  and ?

Y

T

= θ(X) ⋅ T + g(X, W) + ϵ

= f(X, W) + η

E[ϵ|X, W ]

E[η|X, W ]

E[ϵ ⋅ η|X, W ]

= 0

= 0

= 0

X W
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Rewriting
We can subtract  and get:

Where we use that

We can estimate the nuisance functions  and 

Non-parametric prediction problem

Double machine learning

E[Y |X, W ]

Y − E[Y |X, W ] = θ(X) ⋅ (T − E[T |X, W ]) + ϵ

E[Y |X, W ] = τ(X) ⋅ E[T |X, W ] + g(X, W)

E[Y |X, W ] E[T |X, W ]
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Compute residuals
We estimate the nuisance functions (using data splitting) and
calculate residuals

The residuals are related by the equation

Y
~

T
~

= Y − E[Y |X, W ]

= Y − E[T |X, W ]

Y
~

= θ(X) ⋅ + ϵT
~
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Partialling out estimator
The estimator based on the Robinson’s (1988) partialling out
approach is then

For some model class , i.e. a constant average treatment
effect in Chernozhukov et al. (2018)

Equation 4.4 in Chernozhukov et al. (2018)

θ̂ = [( − θ(X) ⋅ ]argmin
θ∈Θ

En Y
~

T
~)2

Θ
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Summing up
We perform two steps of machine learning and regress
residuals

Predict  based on 

Predict  based on 

Calculate residuals

Regress them on each other, subject to some functional
form

Where prediction of  and  utilize data splitting

T X, W

Y X, W

T Y
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In practice
When coding this up, this is what actually happens:

Find best model and hyperparameters for predicting  and

Give these to an estimator with functional form assumption
you want

(Possibly evaluate model if heterogeneous treatment
effects)

Y

T
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Decisions
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Worries
You need to worry about

Predictive performance in first double machine learning
stage

What functional form to assume

And whether there’s only selection on observables

Some methods support IV
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Predictive performance
The predictive performance in the two predictive models can be assessed as usual

Hold out data (same amount of folds as estimator)

Any model you can think of

Linear/logistic models, including regularized regression

Tree based models, including random forests & boosted trees

Neural networks

Or an ensemble of all these

Good that you learned a lot about prediction!

53



Tuning beforehand?
You can perform hyperparameter selection using all the data

Alternatively, perform hyperparameter selection just within
auxiliary sample

Better hyperparameter selection results in better nuisance
estimates

More precise causal inference

As such, this should be done

Not a problem as long as relatively few hyperparameters are
tuned, see references here
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https://github.com/microsoft/EconML/issues/454


Repeated nuisance estimation
You can also increase precision by estimating noise multiple
times

Advocated by Duflo in , slide 65

Choose median or mean for final regression

Median more robust to outliers

this presentation
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https://www.nber.org/lecture/summer-institute-2018-meet-randomistas-useful-ml-tools-empirical-researchers


Linear functional forms
ATE in Chernozhukov et al. (2018)

Also considers instrumental variables

Linear and high-dimensional linear in Semenova et al. (2017)

High-dimensional linear needs to assume sparsity

Utilizes a debiased LASSO from Van de Geer et al. (2014)

Could also be used with many technical regressors
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Non-parametric functional form
Non-parametric in Athey et al. (2019)

Also considers instrumental variables

Relatively low-dimensional data

Non-parametric in Oprescu et al. (2019)

Can provably handle sparse high-dimensional data

Both use the bootstrap of little bags for inference
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Implementations
Implemented in econml

LinearDML

SparseLinearDML

CausalForestDML

DMLOrthoForest

Also has other implementations, but LinearDML,
SparseLinearDML and CausalForestDML most cited papers

Proxy for usability?
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Some alternative packages
In R: doubleml

Supports 

See Chiang et al. (2022) for theory

Chernozhukov on author list

Also a Python package

EconML has  60 times more downloads in a week

More estimators & functionality

In Stata: ddml & pystacked

pystacked uses stacked sklearn models

Same guys behind pdslasso and other LASSO implementations in Stata

clusters

≈
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https://docs.doubleml.org/stable/examples/py_double_ml_multiway_cluster.html


Doubly robust variants
For categorical treatments, one can also use doubly robust
methods

Predict  based on both  and , not just 

Otherwise procedure basically the same

Last step uses an augmented inverse probability weighted
estimator (AIPW)

See  for more information

Y X, W T X, W

here
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https://econml.azurewebsites.net/spec/estimation/dr.html#overview-of-formal-methodology


Doubly robust or not?
Pros

If wrong functional form, get best linear projection

Slightly stronger robustness guarantees

Cons

Requires categorical treatment

Generally higher variance

Especially if weak overlap
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Kitchen sink causality
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What controls to include
Flexible methods

Both post-double-selection and double machine learning

Tempted to join everything available on observation

Let the model select important variables

Keeps all covariates with predictive power
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Question
What’s the problem with the aforementioned idea?
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Good and bad controls
As always, we should not include ´bad controls´ (Angrist &
Pischke, 2009)

Double machine learning is still sensitive to it, see
e.g. Hünermund et al. (2021)

Perform variable selection and double machine learning only
with good and neutral controls
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Causal graphs
Good and bad controls are relatively vague

Graphs create a way of organizing thoughts about DGP’s

Can be combined with a structural approach
e.g. Hünermund & Bareinboim (2019)

Different graphs imply different conditional distributions

Can create graph selection procedures, but hidden
confounders still a problem

There’s a crash course in Cinelli et al. (2020) and a discussion of
the use of graph approaches versus potential outcome
approaches in Imbens (2020)
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Causal model selection
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Many CATE estimators
We have many different CATE estimators

All based on same ‘important’ assumptions

Unconfoundedness

Sometimes we might prefer one method a priori

Linear models are more interpretable

Sometimes we are just interested in personalized estimates

We want the most accurate model

Hence causal model selection
70



Supervised model selection
Usually we utilize that we observe the ground truth  for
model selection

Maximize out of sample performance

Minimize expected loss, 

 could be mean squared error, accuracy etc.

The counterpart in causality would be 

Sadly, we do not observe the ground truth of causality

Y

E[l( , Y )]Ŷ

l(⋅)

E[l( (x), τ)]τ̂
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Question
How could one evaluate CATE’s?

Hint: Remember the partialling out regression

Y
~

= θ(X) ⋅ + ϵT
~
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An alternative
Nie & Wager (2021) propose an alternative method to evaluate
CATE estimates, 

Rewriting the partialling out regression

Our treatment effects should explain the residual 

τ̂

Y
~

Y
~

= θ(X) ⋅ + ϵT
~

= + ϵτ̂ T
~

Y
~

E[ϵ|X, W ] = 0]
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The loss function
With a slight reformulation of eq. 4 in the paper, we get

Should use out of sample residuals and CATE estimates

Split data into bins

Estimate residuals  in each bin, training on all others

Just like double machine learning

Then evaluate loss function

Alternatively, use held-out data

[ (⋅)]L̂n τ̂ =
1

n
∑
i=1

n

[ − ]Y
~

τ̂ T
~ 2

,Y
~

T
~
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Causal model selection
Can evaluate estimates from any model

We now have causal model evaluation

This method most consistently selects high-performing
model (Schuler et al., 2018)

Implementations exist

How grf tunes model hyperparameters with tune

econml has a score function
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Can also create models
Nie & Wager (2021) also motivate a two step modelling process

Estimate nuisance functions

Select parameter estimates that minimizes loss function

Estimate  using a model, i.e. kernel regression

Called the R-learner due to it’s close link to Robinson (1988)
and the focus on residuals

KernelDML in econml

No confidence intervals

τ̂
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Heterogeneity or not?
One could also evaluate against a constant average treatment
effect

How much better are we at explaining residuals compared
to a constant average treatment effect

Implemented in the RScorer in econml, see 

If score is negative, heterogeneous treatment effects are
worse than constant average treatment effect

Possibly overfitting during training

here
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A quick summation
The very short version

Decide whether to use doubly robust estimator or not

Treatment type and how good is overlap

Create models for  and  based on  (and  if doubly
robust)

Choose best hyperparameters before DML using cross-
validation

Choose a functional form (an econml function)

Alternatively, perform causal model selection

T Y X, W T
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Different estimators
econml has a table of different 

Concise summary of estimators with different assumptions
& treatment types

Find the papers behind the estimators and read those!

econml also has a GitHub with example 

estimators

notebooks
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Some additional possibilities
Meta-learners also estimate CATE’s

Cannot deliver confidence intervals

See Künzel et al. (2019)

Bayesian additive regression trees (BART) also estimate CATE’s

It’s Bayesian

See Chipman et al. (2010)
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