Explainability

Magnus Nielsen, SODAS, UCPH

Agenda

- Explainability
- Model specific
 - Linear regression
 - Decision trees
- Model agnostic
 - Permutation importance
 - Partial dependencies
- SHAP values

What is explainability?

Question

In your opinion, what is explainability in the context of machine learning?

Explainability

What is an explanation?

• The answer to a why question

In the context of today:

• Why did our model predict what it did

Today we will look at

- What constitutes good answers
- How we can create these answers
- The strengths and weaknesses of different answers

Why explainability?

Understanding our models can help in many scenarios

- Model building
 - Debugging
 - Improving accuracy
- Fairness
 - Detect if models use protected attributes heavily
- Acceptance of models
 - (Some) people don't trust predictions made by black box models

When is an explanation good?

Important to remember that explanations are social and should be tailored to the situation

Some other general pointers to think about when explaining your models:

- We like to contrast explanations to some (perhaps imaginary) other observation
 - Contrast to average or other observations
- We prefer selective explanations, even though they may be less truthful
 - Focus on the biggest factors
- We prefer explanations that focus on the abnormal, but if no abnormal events occur, we prefer explanations to be general
 - Focus on abnormal values in observations

Scope of methods

Global and local methods

Global methods describe the average behaviour of a machine learning model

- Explaining the broader strokes
- Debugging and improving by discovering unexpected and weird behaviour

Local methods explain individual predictions (or model in the vicinity of an individual prediction)

- Explaining a specific instance
- Debugging and improving by examining a few bad predictions

Comprehensibility above all

The most important property is how comprehensible the explanations are

• Can the audience actually understand the explanation?

The social context of explanations is especially important here

• You would all probably be comfortable with interpretation of linear or logistic regression models

Other properties of explanations

There are many other properties that one can consider, i.e.:

- Fidelity: How well do the explanation explains the prediction
 - Some methods offer only individual fidelity
- Accuracy: How well do explanations explain unseen values
 - Especially important if using explanations in place of predictions
- Stability: Are explanations similar for similar observations (in regards to both input and prediction)
 - Unless small perturbations drastically change output, explanations should be similar

A longer list can be seen here

Properties of explanation methods

Expressive Power

• What is the structure of explanations, e.g. weights or flowcharts

Translucency

• How much does the explanation rely on the model which made the prediction

Portability

- How portable is the explanation method between different models
- Translucency and portability have an inverse relationship

Algorithmic Complexity

• How much time does it take to compute the explanations

How to achieve interpretability

Two methods:

- Use models that are intrinsically interpretable
- Use post-hoc methods for explainability

Which to choose?

The most accepted within social sciences and legislation are intrinsically interpretable models

- Linear regression, logistic regression or decision trees
- Can obtain full global fidelity
 - Can explain exactly why a prediction was what it was
- Generally entails a performance trade off

This is not always necessary and model-agnostic post-hoc methods are most often used

• It seems that post-hoc methods are becoming the default (at least within data science)

Linear regression

Weights

In linear models, we can interpret the weights

• All else equal

Lots of collective experience

- Both among social scientists, but also other fields
- Going to focus on some visuals

Weight plots

Source: Molnar, 2022

Weight feature plot

Source: Molnar, 2022

Individual explanations

Source: Molnar, 2022

Selective explanations

LASSO models create sparse models due to the L_2 norm Can be done to either

- Increase performance
- Reduce complexity

lpha can be tuned such that a set amount of weights are non-zero

• Utilize same methods as before

Drawbacks

- No interactions unless you include them
- Linear models do not perform well with non-linear data
- All else equal interpretation
 - If features covary, this can create weird interpretations
- If features covary, model may arbitrarily select one

Decision trees

Decision trees as flowcharts

Decision trees can be plotted

- Easy to understand
- A collection of if-else statements and splits
- Easy to imagine counterfactuals
- They always go left in sklearn

Maximum amount of leafs is maximum depth to the power of two

A shallow flowchart

A deep flowchart

Question

Do you consider linear regression or decision trees to be most explainable?

• Does it depend on the amount of features or complexity of the model?

The social aspect of explainability

I wager that most people here would default to linear regression

You would have no problem interpreting coefficients

• But what about the receiver of the explanation?

I posit that decision trees are more easily understood for a layman

- Especially for a single given observation, e.g. the layman's own observation
- Cutoffs readily available for counterfactuals

Mean decrease in impurity

Another method for trees, which calculates global feature importance

For all features:

- Go through all the splits for which the feature was used
- Measure how much it has reduced the MSE or Gini index compared to the parent node

Scale sum of importances to 100

• Interpretation: Importance as a fraction of total decrease in impurity

Titanic with two random features

Source: sklearn

Question

This method is generally biased and favors high cardinality features.

Why?

Drawbacks

The method favors high cardinality features because these features are more often split on

- E.g. once a decision tree has split on a binary feature, it won't split on it again
- See this example from sklearn

Can only say something about the model in relation to the training data

As a result, not often used

• Permutation feature importance used instead

Model agnostic

Shedding light on the black boxes

Some models are so complex that we cannot understand them or their components

Here we can use model agnostic explanation methods

• Translucency is gone

Permutation feature importance

Permute a feature

- This breaks the dependence between $X \, {\rm and} \, y$
- Also breaks any interactions

How much does this loss of information change the score (e.g. MSE)

• Nice because this is the object of main interest!

Can be computed for both train and test

What data to use

Most commonly done on test data

- Realistic error estimates
- The object of interest

However, training data will show what features the model uses

• Can be used

Permutation plots

Source: sklearn

Pros and cons

Pros:

- Nice interpretation
- Highly compressed
- No retraining
- All interactions

Cons:

- Permutations can create unrealistic datapoints
- If features covary, importance is split between them
 - Could do some form of clustering based on covariation, see here
- Interpretation not related to prediction itself
Partial dependencies

Average dependence

What happens when we set a feature X with x?

• In essence, hold all values fixed except one (or two)

Plot how the average prediction changes as a function of X

- This is called a partial dependence plot
- Due to the averaging, this is a global method

Partial dependence plot

Source: Molnar, 2022

Pros and cons

Pros

- Easy to interpret
- Easy to compute

Cons

- Limited to one or two features due to perception
 - "Due to the limits of human perception, the size of the set of input features of interest must be small (usually, one or two)", sklearn User Guide
- Only considers averages
 - Can mask heterogeneous effects
- Dependencies are all else equal
 - This is something we're used to from OLS
- Can create absurd datapoints

Uncovering the heterogeneity

How to avoid hiding heterogeneous effects?

Plot a partial dependence for all observations!

• This is called an individual conditional expectation (ICE) plot

As we no longer average over all observations, it is local

ICE plots

Source: Molnar, 2022

Centered ICE plots

Source: Molnar, 2022

Pros and cons

Pros

- Easy to interpret
- Can display heterogeneity

Cons

- Now limited to just one feature
- Still all else equal dependencies
- Can be hard to visualize for large datasets

SHAP

Roadmap

Shapley Additive Explanations allocate prediction outputs as if a game (Shapley values) using a local interpretable model (LIME)

• As such, we will (quickly) cover these

There's a lot of math and pseudo-code in the papers and book regarding SHAP and it subcomponents

• This I have omitted

LIME

Local interpretable model-agnostic explanations introduced by Ribeiro et al. (2016)

• Only focus on local fidelity

Create a low-complexity (intrinsically interpretable) model for each observation

• E.g. LASSO

Available stand-alone in the package LIME (not covered in exercises)

LIME in a nutshell

Select observation to explain

- Perturb the observation and compute black box predictions
- Weight the new samples according to proximity (using some kernel)
- Train a weighted, interpretable model on the dataset with the variations
- Explain the prediction by interpreting the local model

Devil in the details

Big question: What kernel bandwidth to use?

• LIME implementation in Python has a fixed kernel with a fixed bandwidth

LIME visually

LIME fitting procedure

Source: Molnar, 2022

Different kernels

LIME with different kernels and true dependence

Source: Molnar, 2022

Shapley values

Allocate payout using Shapley values from cooperative game theory

• Features are players, prediction is payout

Theoretically grounded

Allocation of payouts

Groups of players (coalitions) can either participate in the game or not

• If a player enters the game with a coalition, this can change the payout

This change in payoff is distributed to the players in the coalition

Game is played for each instance

• A local method

Why?

Nice theoretical guarantees

- Efficiency
 - Full local fidelity
- Symmetry
 - If two features attribute equally, the Shapley values are equal
- Dummy
 - Features which never change the payout have a Shapley value of zero
- Additivity
 - Payout attributions from multiple games are additive

An example

Marginal contributions in feature sets

Source: aidancooper.co.uk

One problem

Need to calculate models with the power set of all features

• Retraining a huge amount of models

This quickly becomes computationally expensive

SHAP

To reduce compute, we return to SHAP (Lundberg & Lee, 2017)

• SHAP and Shapley values are not the same

Essentially: Change kernel in LIME with a weighing scheme based on Shapley values!

• Based not on distance, but how many features are 'present'

Why?

• Retains the nice guarantees from Shapley values!

Non-participation

To 'simulate not participating', we permute the features

• We break the dependency, just like in permutation feature importance

By doing this, we retain an (uninformative) input (which the model requires) and do not need to retrain!

• Much cheaper to compute

How to permute?

Generally, we sample from a given dataset (subset of the training data or prototypical observations)

- SHAP values still local and for every observation
- Just a question of what we replace the values with when permuting

This can induce nonsensical feature combinations

• Same tale as with other methods where we change an input value

Called interventional feature perturbation, and is default in SHAP

An alternative sampling strategy

There exists an alternative SHAP implementations for tree-based models, introduced in Lundberg et al. (2020)

- Faster than fully model agnostic SHAP
- Very common way to explain e.g. SOTA XGBoost models

Here we can do path dependent sampling

Essentially, we use information about how many samples were in each node during training

- Traverse the tree and give weight to each node as seen in training data
- See this blog for an easy to understand example

A simpler example

Decision tree

Decision plot

Source: nicolas-hug.com

Which one to choose?

True to the model: Interventional

- Useful when explaining models
- Don't think of independence, but SCM and do-operations
 - See e.g. this or this GitHub discussion or Janzing et al. (2020) for SCM math
 - 'Causal' for the model
- Requires data (use a subset of training data)

True to the data: Path-dependent

- Useful when trying to replace black-box
- Avoids unrealistic datapoints
- Does not require data

Enough theory

Lets talk plots

We remember that SHAP values are all individual

• Thus based on a collection of observations, i.e. a single, train set, test set or a group of interest

Through clever plots and summary statistics, we can still obtain global insights

All easy to compute and plot through SHAP

Force plot

Source: Molnar, 2022

Beeswarm plots

Source: Molnar, 2022

Feature importance plots

Dependence plots

Source: Molnar, 2022

Dependence plots with interactions

Source: Molnar, 2022

Pros and cons

Pros

- Theoretical guarantees
- Easy to interpret
- Fast(ish) for tree-based models
- Local, but global aggregations

Cons

- Not fast(ish) for non-tree models
- True to the data or model for tree models
 - Or unrealistic datapoints for kernel
- Can be gamed (Slack et al., 2020)

Further information

The rest of the book by Molnar has more methods

• e.g. counterfactual explanations

Text and image also have methods developed for them

• Not covered due to a mainly tabular focus in this course

References

Janzing, D., Minorics, L., & Blöbaum, P. (2020, June). Feature relevance quantification in explainable AI: A causal problem. In International Conference on artificial intelligence and statistics (pp. 2907-2916). PMLR.

Lundberg, S. M., Erion, G., Chen, H., DeGrave, A., Prutkin, J. M., Nair, B., ... & Lee, S. I. (2020). From local explanations to global understanding with explainable AI for trees. Nature machine intelligence, 2(1), 56-67.

Lundberg, S. M., & Lee, S. I. (2017). A unified approach to interpreting model predictions. Advances in neural information processing systems, 30.

Molnar, C. (2022). Interpretable machine learning, https://christophm.github.io/interpretable-ml-book/ (2022-12-14)

Ribeiro, M. T., Singh, S., & Guestrin, C. (2016, August). "Why should i trust you?" Explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 1135-1144).

Slack, D., Hilgard, S., Jia, E., Singh, S., & Lakkaraju, H. (2020, February). Fooling lime and shap: Adversarial attacks on post hoc explanation methods. In Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society (pp. 180-186).
To the exercises!