Supervised learning

Magnus Nielsen, SODAS, UCPH

Agenda

- Supervised learning
- Regression & classification
- Tree methods
- Ensemble methods
 - Bagging
 - Boosting
- Neural networks

Supervised learning

Has a given target and uses structured datasets

- Every column is a variable
- Every row is an observation
- Every cell is a single value

country	year	cases	population
Afghanstan	1.00	45	18, 7071
Afghanistan	2000	2666	20:95360
Brazi	1999	31737	172(06362
Brazi	2000	8(488	174:04898
China	1999	212258	1272915272
Chin	20	21 66	1280 28583

variables

observations

values

A superficial tour of supervised learning

Focus on two things:

- Intuition about how these different models work
- Information about what hyperparameter(s) are key in each model
 - Most importantly, you will learn how to handle overfitting

I will give a tips and tricks summary for each model

I won't go much into the math

Regression & classification

Question?

What's the difference between regression & classification?

Regression

Target is a continuous value

Common in many situations:

- What is the income level of this person?
- How much wellbeing?
- Aggregates of classification tasks
 - What percentage will graduate?

How to measure performance

You probably know a lot of them already:

- Mean squared error
- Mean absolute error
- Mean absolute percentage error
- R^2

Often changes how models weigh extreme values

Classification

Categorical outcomes, which can be both binary and multiclass

Common in many situations:

- Who will commit a crime
- Who will graduate
- Who will become sick
 - With what sickness (multiclass)
- In which group does this instance belong

How to measure performance?

An intuitive starting point would be the accuracy of the classifier, i.e. what percentage of observations were correctly classified

$$Accuracy = \frac{True}{True + False}$$

We need to operationalize this mathematically

Introducing the confusion matrix

Binary confusion matrix

Source: Raschka & Mirjalili, 2022, ch. 6

A mathematical starting point

Rewriting accuracy using the confusion matrix

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

This is a fraction between 0 and 1

But it depends on the scenario

Could use precision if not classifying negative labels as positive is important

 $\frac{TP}{TP+FP}$

Interpretation: 'How many of the predicted positive labels are correct'

Could use recall if not missing positive is important

 $\frac{TP}{TP+FN}$

Interpretation: 'How many of the actual positive labels did we correctly classify'

sklearn has a whole list of performance metrics you can easily use, where other common ones are the F1 score and the ROC AUC (AUROC)

It matters

The results can be very dependent on the metric chosen, especially if classes are imbalanced

• Models can and will sometimes figure out that the best accuracy is achieved by always predicting the majority class

Tips:

- Use a baseline model
 - For classification, could be a model which always predict majority class
 - For regression, a model which predicts mean/median
- Look at the confusion matrix

Logistic Regression

Not to be forgotten

Linear combination with a logistic/sigmoid activation function to turn it into a probability

$$p(X)=\sigma(f(X,w))=rac{1}{1+e^{-(Xw)}}$$

Regularized just like Lasso or Ridge models Regularization implies we need to...

• Standardscale!

Tips and tricks

sklearn.linear_model.LogisticRegression for
classification

- penalty specifies type of regularization
 - e.g. 11 for absolute values, 12 for squared values
- C specificies regularization strength
 - Lower values reduce overfitting

Tree methods

Decision tree

Split the data up into different groups one or more times, ending up with a flowchart! Why?

- Good at capturing non-linear relationships
- Easily understandable (more about this in explainability session)

Why not?

- Bad at extrapolation
- I just like linear models

An example

The dataset Alcoholic Born in Becomes mother Copenhagen criminal Yes No Features/ Target/model outcome Explanatory variables

Split the data into sections

Model

How to split?

Split using intuition

Two new datasets

Split nodes which are still impure

A better split

How to mathematically find best split

To make an algorithm, we need a measure of 'goodness' of fit For classification we use separation of classes as a measure

- Commonly measured using Gini Impurity or Shannon entropy
- Calculate a weighted average, go with the split with lowest impurity/error

For regression, we use metrics such as mean squared error or mean absolute error

Shannon entropy

General formula

P = [p, 1 - p]Entropy = -(p \cdot log(p) + (1 - p) \cdot log(1 - p))

0 criminal / 8 lawful

P = [0, 1]Entropy = -(0 \cdot log(0) + 1 \cdot log(1)) = 0

5 criminal / 2 lawful

P = [2/7, 5/7]Entropy = $-(2/7 \cdot \log(2/7) + 5/7 \cdot \log(5/7)) = 0.59$

Entropy of alcoholic mothers

Check other splits

Tips and tricks

sklearn.tree.DecisionTreeClassifier for classification
sklearn.tree.DecisionTreeRegressor for regression

- max_depth specifies how deep the tree is
 - Smaller values reduce overfitting
- min_samples_split specifices how many observations need to be in a node for it to allow a split
 - Higher values reduce overfitting
- min_samples_leaf specifies how many observations need to be in an end node/leaf for it to be allowed
 - Higher values reduce overfitting

sklearn has a write-up on decision trees with more math, tips for practical use and more

Ensemble methods

How to aggregate models

In bagging, we do bootstrap aggregation

- Train many models, which all try to estimate the outcome using bootstrapped samples
- Can be different models, i.e. some which do well at linear relations and others for non-linear relations

In boosting, we 'boost' the models sequentially

• Train weak models in succession, where each models tries to increase performance based on previous models output

Bagging

The random forest is a bagging method using many decision trees

• All the knowledge you have about decision trees carry over!

Randomness

The new thing is two sources of randomness:

- for each tree, we randomly select the sample to train on (sampled with replacement, bootstrap)
- at each split, only consider a random subset of features

You need one of these two sources of randomness to avoid growing identical trees This reduces overfitting, as

- some trees do not see the samples which other models overfit to
- some trees do not see the features in a split which other models used to overfit with

Tips and tricks

sklearn.ensemble.RandomForestClassifier for classification
sklearn.ensemble.RandomForestRegressor for regression

- All the parameters from decision trees carry over
- n_estimators controls how many trees are grown
 - Larger values are generally better, but more computationally expensive
- max_features controls how many features are considered at each split
 - Lower values reduce overfitting

Random forests are random, so remember a seed!

sklearn has a short write-up on random forests

Boosting

Use 'weak learners' (often decision trees of relatively shallow depth) which are built to correct each others mistakes

The AdaBoost (adaptive boosting) model does this by weighing the misclassified observations (high error in regression) higher in the next weak learning phase

Illustrated

Source: Raschka & Mirjalili, 2022, ch. 7

Tips and tricks

sklearn.ensemble.AdaBoostClassifier for classification,
sklearn.ensemble.AdaBoostRegressor for regression

- All the parameters from decision trees carry over
 - But designed with weak learners in mind
- n_estimators controls how many trees are grown
 - Lower values reduce overfitting
- learning_rate controls how much weight is given to misclassified observation
 - Lower values reduce overfitting

sklearn has a short write-up on AdaBoost

Neural networks

Neural networks

Neural networks can be extremely complicated

They can be both supervised and unsupervised

As an introduction, we focus on feed forward neural networks Different models are created for and excel in different areas

- What you want or need to learn depends mostly on the input format
- For images, the literature is called computer vision (CV), for text it's called natural language processing (NLP)

Feed forward neural networks

Following illustrations are from:

- Ulf Aslak, who used to work at SODAS and taught Social Data Science: Text Data and Deep Learning, and
- Tensorflows Neural Network Playground

In essence, feed forward neural networks are nested logistic regressions (roughly)

Back to logistic regression

Linear combination with an activation function (sigmoid/logistic function, σ)

$$\sigma(f(X,w)) = rac{1}{1+e^{-(Xw)}}$$

It's...linear

Not good at non-linear relationships

Would require input transformations

• Not always feasible

What if we limited ourselves to inputting just X_1 and X_2 ?

Question

How many logistic regressions do you think it would take to approximately separate the two groups?

First logistic regression

 w_1

 w_2

 x_1

 $\sigma(f(\mathbf{x}))$

Second logistic regressions

 $\sigma(w_0 + x_0 w_1 + x_1 w_2) = z_0(\mathbf{x})$

 $\sigma(w_3 + x_0 w_4 + x_1 w_5) = z_1(\mathbf{x})$

Third logistic regressions

What now?

New problem: Given Z, predict y

	z_0	z_1	<i>z</i> ₂		у
Z =	0.3	0.75	0.78		0
	0.25	0.1	0.95		1
				$\mathbf{y} =$	•••
	0.79	0.99	0.3		1
	0.34	0.6	0.1		0

Fourth logistic regression

 $\sigma(w_0 + x_0 w_1 + x_1 w_2) = z_0(\mathbf{x})$

$$\sigma(w_3 + x_0 w_4 + x_1 w_5) = z_1(\mathbf{x})$$

$$\sigma(w_6 + x_0 w_7 + x_1 w_8) = z_2(\mathbf{x})$$

New problem: Given Z, predict y

Solution: Why not use a logistic regression?

Succes!

Mathematical form

$$\sigma \left(w_{9} + \sigma (w_{0} + x_{0}w_{1} + x_{1}w_{2})w_{10} + \sigma (w_{3} + x_{0}w_{4} + x_{1}w_{5})w_{11} + \sigma (w_{6} + x_{0}w_{7} + x_{1}w_{8})w_{12} \right) = \sigma \left(f(x) \right)$$

Compressing the graph

Labelling the graph

The Multilayer Perceptron

A fully connected feed forward neural network is called a Multilayer Perceptron (MLP)

By omitting the last logistic activation, the model is turned into a regression model

• Can also do multiple output neurons for multiple outcomes

The sklearn implementation is regularized (L2), so we should...

• Standardscale!

Tips and tricks

sklearn.neural_network.MLPClassifier for classification
sklearn.neural_network.MLPRegressor for regression

- alpha controls the amount of regularization
 - Higher values reduce overfitting
- hidden_layer_sizes is a tuple which controls amount of hidden layers and hidden neurons
 - e.g. (6, 7, 8) would give 3 hidden layers with 6, 7 and 8 hidden neurons
 - Fewer of both reduce overfitting
 - Default is one hidden layer with 100 hidden neurons

sklearn has a write-up on MLP with more math, tips for practical use and more

References

Raschka, S., Liu, Y. H., Mirjalili, V., & Dzhulgakov, D. (2022). Machine Learning with PyTorch and Scikit-Learn: Develop machine learning and deep learning models with Python. Packt Publishing Ltd.

To the exercises!