
Model and
hyperparameter

selection
Magnus Nielsen, SODAS, UCPH

1

Agenda
The holdout method

Regularized regression

Pipeline

Gridsearch

Curves

2

New field, new lingo
Parameters are the same as weights

Intercept is the same as bias

Covariates are the same as features

Notation is a bit different, but it’s the same

y = Xw + ϵ

y = Xβ + ϵ

3

Holdout method

5

Minimizing loss functions
Interested in minizing the expected loss, ,
on unseen data

 is a (possible non-linear) function mapping the input
 to the output , i.e.

 could be the mean squared error for regression
problems or accuracy for binary classification

[L((x)), y]E(x,y) f̂

(⋅)f̂

X y ŷ

L(⋅)

Sadly, we have no unseen data, so how do we find the best
model?

6

Introducing the holdout method
We only train on some fraction of the data, leaving a part of the
sample only for model evaluation!

We split the data into two parts:

One for development/training and one for testing.

The testing data must only be used ONCE at the end to
evaluate the models.

The development dataset can be used as one sees fit

7

We generally split at least once more

Figure 1: The holdout method

Source: Raschka & Mirjalili, 2019, ch. 6

8

At least once more!
Using K-fold cross-validation, we split the development data
into K folds, train on and validate on one, repeating
times

Figure 2: K-fold cross-validation

K − 1 K

9

There are other methods
Repeated K-fold is also popular, but , most
commonly due to:

stratification issues

timeseries structure

other methods exist

More splits require more computation!

Cost

Energy

Time

10

https://scikit-learn.org/stable/modules/classes.html#splitter-classes

Variance estimates are not simple
There exists no unbiased estimator of the variance of K-fold
(Bengio & Grandvalet, 2003), so you should:

Refrain from making claims about significance

Look into the literature, i.e. Nadeau & Bengio (1999), and
find a conservative estimator which fits your scenario

We will not cover this and use point estimates only

11

Regression

13

Ordinary Least Squares
OLS is a minimization problem

Where is the Euclidean norm

It also has a very familiar closed form solution

In general, we let the people who implement the models care about solving the problems,
and I won’t spend much time on it

= {||y − Xw| }ŵ argmin
1

N
w

|2
2

|| ⋅ ||2

= (X (y)ŵ X ′)−1 X ′

14

Overfitting is an issue
We don’t control the bias-variance (over-underfitting) trade-
off, as OLS is unbiased

Figure 3: Varying degrees of input complexity

Can only be done by changing the input complexity
(polynomials, interactions, etc.)

15

Regularization
We can add a term to the minimization problem which
penalizes model complexity

 is a so-called hyperparameter, and the values of these are
chosen by us

= { ||y − Xw| + λf(w)} , λ ≥ 0ŵ argmin
w

1

N
|22

λ

Regularization happens implicitly or explicitly in all machine
learning, as this allows us to control the bias-variance trade-off

16

Lasso
The penalty could be the sum of the absolute size of the
weights, as in the Lasso introduced by Tisbhirani (1996)

where is the L1 or Taxicab norm, corresponding to

= { ||y − Xw| + λ||w| } , λ ≥ 0ŵ argmin
w

1

N
|22 |1

|| ⋅ ||1
| |∑k

i=1 wi

17

Ridge
Another penalty could be the sum of the squared weights, as in
the Ridge introduced by Hoerl & Kennard (1970)

where again is the L2 or Euclidean norm, corresponding

to

= { ||y − Xw| + λ||w| } , λ ≥ 0ŵ argmin
w

1

N
|22 |22

|| ⋅ ||2

∑k
i=1 w2

i

− −−−−−−
√

18

A geometric interpretation

Figure 4: Two-dimensional plots of cost minimization

Source: Raschka & Mirjalili, 2019, ch. 4

(a) OLS (b) Lasso (c) Ridge

19

Scaling
As we penalize weights based on their size, the scale of each
covariate matters!

Therefore we scale all inputs before it goes into the model

It is common to z-standardize (StandardScaler), which
corresponds to subtracting the mean and dividing with the
standard deviation

20

The devil is in the details
How to encode dummies?

One-hot encoding, with no category left out due to
regularization

Should also be standardized!

How to include an intercept?

Should be done after standardizing, else we have a constant
column of zeros

The model itself usually adds one, so we don’t have to worry
about it

21

Building up to an
example

23

StandardScaler
We fit on our train data, transform all data

scaler = StandardScaler()1
scaler.fit(X_train)2
X_train_std = scaler.transform(X_train)3
X_test_std = scaler.transform(X_test)4

This cells in slide and the next three are not executed, and cannot be run without

importing functions from sklearn or defining your data 24

PolynomialFeatures
If we wanted to make polynomial interactions, it would be the
same procedure!

polfeats = PolynomialFeatures(degree=3, intercept=False)1
polfeats.fit(X_train)2
X_train_pol = polfeats.transform(X_train)3
X_test_pol = polfeats.transform(X_test)4

25

Predict
If we want to make predictions, we use predict instead of
transform

regr = Lasso(alpha=lambda_value)1
regr.fit(X_train)2
predicted_y_train = regr.predict(X_train)3
predicted_y_test = regr.predict(X_train)4

26

All at once

scaler = StandardScaler()1
polfeats = PolynomialFeatures(degree=3, intercept=False)2
regr = Lasso(alpha=lambda_value)3

4
Polynomial features5
polfeats.fit(X_train)6
X_train_pol = polfeats.transform(X_train)7
X_test_pol = polfeats.transform(X_test)8

9
Scaling10
scaler.fit(X_train_pol)11
X_train_std = scaler.transform(X_train_pol)12
X_test_std = scaler.transform(X_test_pol)13

14
Model15
regr.fit(X_train_std)16
predicted_y_train = regr.predict(X_train_std)17
predicted_y_test = regr.predict(X_test_std)18

27

Takeaways
1. It’s repeating the same process multiple times

2. It’s important to remember to use the output from the last
step

3. We only transform on training data!

28

An example with Lasso

30

Some data

import numpy as np1
import pandas as pd2
import matplotlib.pyplot as plt3

4
from sklearn.datasets import make_regression5

6
X, y = make_regression(n_samples=10000,7
 n_features=15,8
 n_informative=3,9
 noise=10,10
 n_targets=1,11
 bias=2, 12
 random_state=1)13

14
y = y + 6 * (X[:,0] * X[:,1]) - 5 * (X[:,2] * X[:,3] * X[:,4]) + 25 * (X[:,15

31

Step 1: Split data

from sklearn.model_selection import KFold, GridSearchCV, train_test_split, 1
from sklearn.preprocessing import PolynomialFeatures, StandardScaler2
from sklearn.pipeline import Pipeline3
from sklearn.linear_model import Lasso, LinearRegression4
from sklearn.metrics import mean_squared_error5
Use mean_squared_error, Lasso, KFold, train_test_split, PolynomialFeature6

7
Development and test data8
X_dev, X_test, y_dev, y_test = train_test_split(X, y, train_size=0.75, ran9

32

Step 2: Cross validation
To reiterate what’s going to happen
for each lambda:

 for each fold:

 fit preprocess on training data

 transform training data

 transform validation data

 fit model on transformed training data

 predict on transformed validation data

 get score on validation data

 save score

 save mean score for all folds

33

Splits data into 51
kf = KFold(n_splits=5)2

3
Hyperparameterspace4
lambdas = np.logspace(-4,3,10)5

6
Mean MSE for each lambda7
mean_MSE_train = []8
mean_MSE_val = []9

10
For each hyperparameter...11
for lambda_ in lambdas:12

13
 MSE_val_list = []14
 MSE_train_list = []15

16
 # For each fold...17
 for train_index, test_index in kf.split(X_dev):18

19

34

Step 3: Admire your output

Lambda MSE Training MSE Validation

0 0.000100 86.010738 121.000621

1 0.000599 86.011340 120.800925

2 0.003594 86.032232 119.655928

3 0.021544 86.648761 114.128397

4 0.129155 93.965888 102.462882

5 0.774264 102.925777 103.214830

6 4.641589 227.640247 228.388808

lambda_df1

Lambda MSE Training MSE Validation

7 27.825594 2978.498180 2980.176269

8 166.810054 11912.563899 11917.745461

9 1000.000000 11912.563899 11917.745461

35

You may feel somewhat overwhelmed
That was a lot of code for finding the best hyperparamter!

You asked for a recipe:

I gave you a cookbook

We can do better!

36

Pipeline

38

Let’s make life easier
There was a whole lot of fit, transform, fit, transform in there…

We must be able to remove all this boilerplate!

This is exactly what the pipeline does:

Applies an arbitrary amount of fit and transform and (can) finish with a fit and
predict step, i.e. a regression or classification model

Why?

1. Greatly reduces the amount of code

2. Reduces room for stupid mistakes

39

What do they look like?

Figure 5: Pipeline

Source: Raschka & Mirjalili, 2019, ch. 6

40

They’re very flexible

Figure 6: A pipeline from previous work
41

Python

Splits data into 51
kf = KFold(n_splits=5)2

3
Mean MSE for each lambda4
mean_MSE_train = []5
mean_MSE_val = []6

7
Hyperparameterspace8
lambdas = np.logspace(-4,3,10)9

10
For each hyperparameter...11
for lambda_ in lambdas:12

13
 MSE_val_list = []14
 MSE_train_list = []15

16
 # For each fold...17
 for train_index, test_index in kf.split(X_dev):18

19

42

Admire your output again

Lambda MSE Training MSE Validation

0 0.000100 86.010738 121.000621

1 0.000599 86.011340 120.800925

2 0.003594 86.032232 119.655928

3 0.021544 86.648761 114.128397

4 0.129155 93.965888 102.462882

5 0.774264 102.925777 103.214830

6 4.641589 227.640247 228.388808

lambda_df_pipe1

Lambda MSE Training MSE Validation

7 27.825594 2978.498180 2980.176269

8 166.810054 11912.563899 11917.745461

9 1000.000000 11912.563899 11917.745461

43

Now to predict
We found the best model, but haven’t tested on our test data
yet!

GET BEST LAMBDA1
idx_min = lambda_df['MSE Validation'].idxmin()2
best_lambda = lambda_df.iloc[idx_min, 0]3

4
MAKE PIPELINE WITH BEST LAMBDA5
pipeline = Pipeline(6
 [7
 ('pol_feats', PolynomialFeatures(degree=3, include_bias=False8
 ('scaler', StandardScaler()),9
 ('lasso', Lasso(alpha=best_lambda, random_state=1))10
]11
)12
 13
FIT ON DEVELOPMENT14
pipeline.fit(X_dev, y_dev)15

16
PREDICT ON TEST17

y test hat = pipeline.predict(X test)18
MSE on test: 100 76

44

Quick aside: Are we beating OLS?

Thank god!

pipeline = Pipeline(1
 [2
 ('pol_feats', PolynomialFeatures(degree=3, include_bias=False))3
 ('scaler', StandardScaler()),4
 ('ols', LinearRegression())5
]6
)7

8
FIT ON DEVELOPMENT9
pipeline.fit(X_dev, y_dev)10

11
PREDICT ON TEST12
y_test_hat = pipeline.predict(X_test)13
print(f"MSE on test: {mean_squared_error(y_test, y_test_hat):.2f}")14

MSE on test: 112.55

45

Gridsearch

47

Let’s make life easier, once again
There was a whole lot of for loops in there, both iterating over folds and
hyperparameters values

This seems repetetive and verbose

It’s the same across all models, and could probably be automated

This is exactly what the Gridsearch does:

Input a splitting method (default K fold), a pipeline and a hyperparametergrid

Ouput: The best hyperparameters

48

We’ve reached our destination

Hyperparameterspace1
lambdas = np.logspace(-4,3,10)2

3
Pipeline4
pipeline = Pipeline(5
 [6
 ('pol_feats', PolynomialFeatures(degree=3, include_bias=False))7
 ('scaler', StandardScaler()),8
 ('lasso', Lasso(random_state=1)) # No lambda9
]10
)11
 12
Gridsearch13
gs = GridSearchCV(estimator=pipeline, 14
 param_grid=[{'lasso__alpha':lambdas}], 15
 scoring='neg_mean_squared_error', 16
 cv=5, 17
 n_jobs=-1)18

19
{'lasso__alpha': 0.1291549665014884}

MSE on test: 100.76

49

A general recipe
Step 0: Split your data

Step 1: Create a pipeline

Step 2: Define your hyperparameterspace

Step 3: Do a search over your hyperparameterspace on
development set

Step 4: Evaluate on test set

50

Curves

52

A visual method of diagnosing over-
and underfitting
Learning and validation curves tells us how our model performs for either:

Different sample sizes

Different hyperparameter values

Not an important output per se, but very helpful while building models!

The performance on the holdout test data is the main metric

sklearn has a short with code and Raschka & Mirjalili write about them in
chapter 6.

write-up

53

https://scikit-learn.org/stable/modules/learning_curve.html#validation-curves-plotting-scores-to-evaluate-models

Learning curve

Figure 7: Learning curve

Source: Raschka & Mirjalili, 2019, ch. 6

54

Python
Show code

55

Validation curve

Figure 8: Validation curve

Source: Raschka & Mirjalili, 2019, ch. 6

56

Python
Show code

57

References

59

Bengio, Y., & Grandvalet, Y. (2003). No unbiased estimator of the variance of k-fold cross-
validation. Advances in Neural Information Processing Systems, 16.

Hoerl, A. E., & Kennard, R. W. (1970). Ridge regression: Biased estimation for
nonorthogonal problems. Technometrics, 12(1), 55-67.

Nadeau, C., & Bengio, Y. (1999). Inference for the generalization error. Advances in neural
information processing systems, 12.

Raschka, S., & Mirjalili, V. (2019). Python machine learning: Machine learning and deep
learning with Python, scikit-learn, and TensorFlow 2. Packt Publishing Ltd.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society: Series B (Methodological), 58(1), 267-288.

60

To the exercises!

61

