
Introduction to Python
Magnus Nielsen, SODAS, UCPH

1

Agenda
Introduction

Fundamental data types

Operators

Containers with indices

Control flow

Loops

Reuseable code

2

Introduction

4

Once again - why?
Python can do stuff that Stata, R and SAS can do:

Machine learning, statistics

Python can do stuff that Matlab can do:

Arrays galore in numpy

Python is a general-purpose programming language:

 in your life

Web development, web scraping and user applications

Automate the boring stuff

Python has a huge community! 5

https://automatetheboringstuff.com/

The internet is your best friend
With a huge community comes a huge amount of resources

Sites such as:

Package documentation, e.g. or

Guides, e.g. or on YouTube

Q&A platforms such as

GitHub, e.g. or

Books, e.g. aforementioned or

Especially Python for Data Analysis may be interesting for this course

pandas sklearn

W3Schools

StackOverflow

pandas sklearn

Automate the Boring Stuff with Python Python for Data
Analysis

But all you really need is Google

6

https://pandas.pydata.org/docs/
https://scikit-learn.org/
https://www.w3schools.com/
https://stackoverflow.com/
https://github.com/pandas-dev/pandas
https://github.com/scikit-learn/scikit-learn
https://automatetheboringstuff.com/
https://wesmckinney.com/book/

Introduction to Python
Go through the Python tutorial at W3Schools

Just kidding, but there really are a ton of great guides out
there!

The only way to get good at programming is simply to
program!

7

https://www.w3schools.com/python/default.asp

A disclaimer
The amount of information in the presentation and exercises
might be overwhelming

View it as an introduction and a teaser

If you wish, you can continue preprocessing data in your
favourite program and import the data into Python and go
straight to machine learning

8

Embedded Python
When using Python, I will try to include both source code and
the output

You can copy the code in the upper left corner

The source code might be hidden – but it’s still there

Show code

print('hello world')1

hello world

hidden hello world

9

Python 101
Python makes heavy use of assigning variables

A variable is created when you assign a value to it using =

Python is case-sensitive

Lines can be commented out with a #1
2

Variables can be assigned with =3
var_1 = 'Example 1'4

5
Variables can be printed with the print() function6
print(var_1)7

Example 1

10

Some tips
help() gives information about objects

In PyCharm, hovering over an object also gives this information

In Jupyter Notebook, pressing shift+tab while inside parenthesis also gives this
information

When you use a . in your code to call a method, PyCharm will suggest methods – to
prompt this in Jupyter Notebook, press tab

help(print)1

Help on built-in function print in module builtins:

print(...)

 print(value, ..., sep=' ', end='\n', file=sys.stdout, flush=False)

 Prints the values to a stream, or to sys.stdout by default.

 Optional keyword arguments:

 file: a file-like object (stream); defaults to the current sys.stdout.

 sep: string inserted between values, default a space.

 end: string appended after the last value, default a newline.

 flush: whether to forcibly flush the stream.

11

Fundamental data types

13

The big three
String

Words

Numeric

Integers and floats

Boolean

True and False

14

How to define them
Strings are defined with '' or "" - Multiline, raw and formatted strings also exist

Numeric are defined as numbers, with type dependent on delimiter

Booleans are defined as True or False

Strings that look like a float/int can cause confusion

strings1
a_string = "I'm a string"2
another_string = '2.5'3
numerical4
an_int = 25
a_float = 2.5 6
boolean7
a_boolean = True 8

9
#confusion10
print(another_string, a_float)11

2.5 2.5

15

Type conversion
You can convert between different types with int(),
float(), str(), bool()

You can check a type with type()

Some conversions are a bit odd, e.g. bool(),

a_float = 2.51
a_string = str(a_float)2
an_int = int(a_float)3
a_boolean = bool(a_float)4

5
print(a_float, type(a_float), a_string, type(a_string), an_int, type(an_int6

2.5 <class 'float'> 2.5 <class 'str'> 2 <class 'int'> True <class 'bool'>

see more here

Note: int() always rounds down 16

https://www.w3schools.com/python/ref_func_bool.asp

Errors
Some things are not possible, and give an error

The most important part of an error message (or stack trace) is
usually the bottom (what went wrong) and the top (what part
of the code started this)

a_string = 'Error string'1
2

int(a_string)3

ValueError: invalid literal for int() with base 10: 'Error string'

17

Question
What do we do with this error message?

Before asking for help, try it out!

18

Operators

20

Basic operators
Some basic operators are:

addition, +

multiplication, *

subtraction, -

division, /

power, **

print(2 + 2)1
print(3 * 3)2
print(7 / 2)3

4

9

3.5

21

Comparisons
Python also supports comparisons, such as:

equals, ==

not equals, !=

smaller than, <=

smaller than or equal, <=

These return boolean values (or errors)

print(2 == 2)1
print(3 <= 2)2
print(7 != 2)3

True

False

True

22

Combining booleans
Boolean values can combined using:

the and operator - equivalent to &

the or operator - equivalent to |

And can be negated with not

print(True or False)1
print(not (True | False))2
print((1==1) and (2==1))3
print(not ((1==1) & (2==1)))4

True

False

False

True

23

Containers with indices

25

Three of the most fundamental composite data types are

the list

the tuple

the dictionary

The list and tuple are accessed with numerical indices

The dictionary is accessed with indices chosen by the
programmer (consists of key:value pairs)

These composite data types can contain other variables1

1. Including other composite data types, such that they are nested! 26

Slicing with numerical
Numerical indices can be accessed using slices in

:
as described

here
a[start:stop] # items start through stop-1

a[start:] # items start through the rest of the array

a[:stop] # items from the beginning through stop-1

a[start:stop:step] # start through not past stop, by step

27

https://stackoverflow.com/questions/509211/understanding-slicing

Examples

a_tuple = (1,2,3)1
a_list = [1,2,3]2
a_dict = {3
 'key_1':'value_1', 4
 2: 73, 5
 'key_4': ['a', 'nested', 'list', [1,2,3]]6
 }7

8
print(a_tuple[0]) # Note that Python is 0-indexed!9
print(a_list[:2])10
print(a_list[0:3:2])11
print(a_dict['key_4'])12

1

[1, 2]

[1, 3]

['a', 'nested', 'list', [1, 2, 3]]

28

Control flow

30

What is control flow
Control flow means writing code that controls the way data or
information flows through the program

In Python, this is (mainly) done using either

conditional logic in if-else statements

loops

31

Conditional logic
Essentially: If something is true, do something

Pseudo-code

In the example above, the block called code is run if the
condition called statement is True (the boolean value)

Python is designed to look like pseudo-code

if statement is true:

 do something

if 1 == 1: 1
 print('Hello')2

Hello

32

What if the condition fails?
We introduce an alternative!

Which again looks similar in Python

if statement is true:

 do something

else:

 do something else

if 1 == 2: 1
 print('Hello')2
else:3
 print('1 does NOT equal 2')4

1 does NOT equal 2

Python also supports elif (else-if)

33

Loops
When you want to do the same thing multiple times, loops are
your best friend

Two types:

For loops

While loops

34

For loops
Do the same thing for each element in an iterable (e.g. a list)

Once again, very similar

for each element in iterable:

 do something

example_list = [1, 2, 3]1
2

for i in example_list:3
 print(i*i)4

1

4

9

35

While loops
Do something while a statement holds

Commonly done with a counting variable, but not necessarily

Make sure it terminates!

while statement is:

 do something

i = 01
2

while i < 3:3
 print(i)4
 i = i + 15

0

1

2

36

Reuseable code

38

It makes life easier
Reuse your own code

self-defined functions

Reuse other’s code

built-in functions and packages

39

Reusing own code
Done using functions, which can be thought of as a recipe

You define:

what the input is

what it should do with

what it should return

Extremely powerful!

You can also create your own packages/modules which you can import, but this is not

covered. 40

How to define a function
The scaffold is as follows

An example

Python supports infinitely many inputs, default values and

def function_name(input_1, input_2, ..., input_k):

 something = do_something()

 return something

def func_name(input_1, input_2):1
 temporary_var = (input_1 + input_2)*22
 return temporary_var3

4
func_name(2,3)5

10

much, much more

41

https://www.w3schools.com/python/python_functions.asp

How to use other’s code
Built-in functions

So commonly used that they ship with Python and can be
called immediately

Packages

Contains functions

Needs to be imported

Sometimes also needs to be installed

42

Question
Do you know any built-in Python functions?

43

Built-in functions
Our dear friend print()!

But so many more:

You won’t be able to remember everything, and once again
Google is your best friend

print('len is',len([1,2,3]))1
print('sum is',sum([1,2,3]))2
print('max is',max([1,2,3]))3
print('abs is',abs(-1))4

len is 3

sum is 6

max is 3

abs is 1

44

Modules
Reusing other people’s code is perhaps the most important
part of Python!

If you’re doing a task, someone else probably has done it
before

You import the module (often with an alias) and then call
functions from the module

Corresponds to reg, fixest, etable and so on

45

How to get them
Usually installed through conda or pip

If you need a specific module, Google “install module_name
python”, e.g. it’s conda install pandas

Install through the commmand-line interface (i.e. Anaconda
Prompt)

Install in notebook by prefacing with %, see

In PyCharm, there’s a package manager window where you can
search for packages

for pandas

here

46

https://pandas.pydata.org/docs/getting_started/install.html
https://ipython.readthedocs.io/en/stable/interactive/magics.html

Some common packages
This will depend on the field you’re operating in

pandas, for loading data and data processing

numpy, for numerical computations (matrices)

matplotlib, for flexible plots

seaborn, for quick plots

sklearn, for machine learning

We will focus on pandas (this session) and sklearn (later
sessions) due to time constraints

I will however shortly introduce the different modules
47

pandas

49

Series
First import

Most basic element is a Series (list / column)

import pandas as pd1

series1 = pd.Series([1,2,3,4,5])1
series2 = pd.Series(['a','b','c','d','e'])2

3
print(series1)4
print(series2)5

0 1

1 2

2 3

3 4

4 5

dtype: int64

0 a

1 b

2 c

3 d

50

DataFrames
Series can be combined into DataFrames

column_1 column_2

0 1 a

1 2 b

2 3 c

3 4 d

4 5 e

data = {'column_1': series1, 'column_2': series2}1
df = pd.DataFrame(data)2

3
df.head()4

51

Tons of possibilities
The DataFrames are the main object in pandas

Usually loaded using pd.read_csv (dependent upon format,
see), but also offer support for dta or SAS7BDAT:

pd.read_stata

pd.read_sas

You will have time to work with pandas during the exercises

There are lots of guides online, e.g.

list

in the documentation

52

https://pandas.pydata.org/docs/reference/io.html
https://pandas.pydata.org/pandas-docs/stable/user_guide/10min.html

numpy

54

Arrays
If you want to work with vectors and matrices, numpy is your
friend!

Only numeric data! Most matrix calculations are done under
the hood (thank god!), so you probably won’t need this much

import numpy as np1
array_1 = np.array([1,2,3])2
array_2 = np.array([3,2,1])3
matrix = np.array([array_1, array_2])4
print('matrix:')5
print(matrix)6
print('slice:', matrix[0,:]) # supports slicing7
print('dot + transpose:', array_1 @ array_2.T) # and dot products, transpos8

matrix:

[[1 2 3]

 [3 2 1]]

slice: [1 2 3]

dot + transpose: 10

55

matplotlib

57

Flexible plots
Not always very intuitive (MATLAB-like syntax), but very flexible

Show code

The figure (f) is the whole plot, whereas the axis (ax) contains the subplots, accessed
through indices

58

seaborn

60

Quick and nice plots
Built on top of matplotlib – lots of powerful premade plots

Show code

The most powerful ones (like pairplot()) are not easy to post-process

61

plt and sns can be combined
Show code

A large amount of different examples with code can be found
online, e.g. here

62

https://www.python-graph-gallery.com/all-charts/

sklearn
To be continued.. 👉👉

63

To the exercises!

64

